KI Absicherung: Proof of Project Concept

11.03.2021, Online, Interim Presentation

PD Dr Michael Mock, Consortium Co-Lead and Scientific Coordinator, Fraunhofer IAIS
From a data-driven AI function to an Assurance Case for the use case Pedestrian Detection

- Process-related generation of synthetic learning, testing and validation data.

- Development of measures and methods that improve the AI function over a wide array of metrics.

- Development and validation of testing methods for these metrics.

- Stringent safety argumentation for the AI function and its Operational Design Domain (ODD).
Proof of Project Concept (PoPC)

- Define and implement the detailed technical workflow for developing a stringent safety-argumentation for AI-based functions in a minimalistic example
- Goals of the Proof of Project Concept
 - Develop an exemplary Mini-Safety argumentation (represented as GSN)
 - Define consistent terminology and workflow
 - Document and implement as a Blueprint for the complete project
 - Cover all required project activities
 - beginning with safety requirement as starting point, also defining and generating data, and going through DNN insufficiencies, mitigating them by Methods and Measures, and measuring the success by metrics which lead to providing evidences
- Definition in core team
- Implementation in PM and operational team
Project Approach to Safety Argumentation for AI-based Functions
(Big Picture)

- Safety and risk analysis
- Safety goals
- Safety requirements
- Evidence strategy
- Safety analysis (HARA, GSA, ...)
- Safety standards (ISO26262, SOTIF...)
- Assumptions / Context
- DNN-Insufficiencies generalisation
- DNN specific Safety concerns → Data, DNN, and metrics
- Safety methods
- Best practices
- Evidence
- Safety measures
- Metrics (Performance & quality)
- Assurance Case (in GSN)

- Architecture measures
- DNN measures
- Testing measures
- Data measures
- Safety measures & metrics

- AI-based function module
 - Customer-facing functionality
 - ODD ground context
 - System architecture
 - (AI-) Function
 - Train/dev data spec acquisition
 - ML model design
 - Pre-Processing
 - ML model training
 - Post-Processing
 - Test / V&V incl. validation data
 - Monitoring
 - Maintenance

- ML LIFECYCLE
 - Data, DNN, and metrics
 - Metrics
 - Architecture measures
 - DNN measures
 - Testing measures
 - Data measures

- ML-specific Safety concerns
- Data, DNN, and metrics
- Safety methods
- Best practices
PoPC Minimalistic Example

- Synthetic Data generated for one ground context (simple crossing, few assets and pedestrians)
- DNN insufficiency: **Insufficient generalisation capability**
- Measure: **Variational Autoencoder**
- Safety Requirement: **Inadmissible application of the AI-Function outside of the specified Operation Design Domain should be avoided**
- **Two-dimensional ODD Definition**: ODD is defined over one variation domain only
- Safety Argumentation: only **Mini-GSN** providing initial evidences
• **Customer Facing Functionality**

 Automated driving function, that once activated by the driver ahead of an urban intersection in "sample village", takes control of the vehicle and drives it safely and smoothly through a specific type of intersection.

• **Architecture (Perception)**

• **AI Function**

 Among others, this function contains an AI function "**Pedestrian Detection**" whose task is to detect all visible vulnerable road users ...
Specification of the Operational Design Domain (ODD)

- The ODD is specified by an **ontology** that describes the relationships of objects that can vary in a defined ground context.
- Derived **Zwicky Boxes** define dimensions and **value** ranges, e.g. for Natural Light Sources
- **Metadata specifications** serve as basis for data generation and testing

PoPC two-dimensional ODD Definition

<table>
<thead>
<tr>
<th>Dimension</th>
<th>IN of ODD</th>
</tr>
</thead>
<tbody>
<tr>
<td>sun elevation</td>
<td>medium (6° - 20°)</td>
</tr>
<tr>
<td>sky</td>
<td>clear</td>
</tr>
</tbody>
</table>
Safety and Risk Analysis

Safety Goal
No pedestrian is harmed or injured by the vehicle during the automated ride through the intersection in "sample village" unless the accident is physically unavoidable.

Decomposition (simplified)
The derived safety requirement for perception is that within the ODD every relevant pedestrian is detected in all cases. Simplified: A pedestrian is relevant if she is visible/not occluded to more than X% and not more than Y meter away from the vehicle.

Derived safety requirements (PoPC only)
1. The bounding box detection works correctly in the ODD - this requirement is not considered further in the following
2. Input data out of the ODD is detected at runtime
Training of AI Functions

Synthetic Data
- Full meta-data annotations
- PoPC Data Split based on project data

AI Function SSD
- Single Shot Detector
- Multiple Bounding Boxes
- Fast Inference

AI Function Deeplab V3+
- Semantic Segmentation
- Advanced prediction performance

Images: BIT Technology Solutions, Opel, Intel
DNN safety measures and metrics

- Autoencoders are trained to „reconstruct“ their input
 - „Reconstruction error“ measures the distance between input and output
 - High reconstruction errors imply that the input is „far away“ from the training data distribution

- Generated Safety Evidence
 - The Autoencoder is used as an online monitor
 - Inputs with high reconstruction errors are likely to produce wrong outputs in the AI function

Example for „IN ODD“ reconstruction

Variational Autencoder

Images: BIT Technology Solutions, Bosch

Architecture	DNN Measures	Testing Measures	Data Measures	Safety Measures & Metrics

Metrics

KIsicherung | Interim presentation | 11.03.2021
Testing and Deriving Evidences

- PoPC splits defines IN ODD / OUT ODD test data
- Reconstruction error is higher OUT ODD (blue) than IN ODD (orange) on average
- A clear distinction on based on a single image is not possible
- Statistical significance of OUT ODD detection can be shown when testing sequences of frames
- A simple light based baseline test outperforms the Autoencoder

- Evidences can be derived, but in the simplistic dark/bright ODD, simple algorithms work better
Safety Argumentation (Method)

- An **assurance case** is used to provide confidence that a system is safe to operate in a defined environment.

- **Assurance case strategy** is the evidence based safety argumentation.

- **Mitigation of DNN insufficiency**
 - Identify
 - Define
 - Mitigate
 - Argue

- Formal approach: "**Goal Structuring Notation**" (GSN)

- The **GSN visualizes** the evidence based safety argumentation.
Resulting Assurance Case - Mini-GSN (simplified, PoPC only)

Context
- **VAE is unable to report in which dimension the training data is left**

Goal
- **Input data out of the ODD is detected at runtime**
- **The bounding box (AI Function) detection works correctly in ODD**
- **Detection of leaving training data distribution by the VAE correlates with malfunction of the AI function**

Strategy
- **Argument over sufficient representation of the ODD by the training data**
- **Sufficient capability of VAE to detect leaving training data distribution**

Evidence
- **Amount of training data is sufficiently large**
- **Statistical coverage of ODD dimensions**
- **Effectiveness of VAE is demonstrated in research**
- **VAE shows correct reaction on validation data within training distribution**
- **VAE shows correct reaction on validation data out of training distribution**
- **Suitable threshold for degradation of AI function has been determined**
- **Correlation demonstrated on sufficiently large validation data with distributional shift**
The PoPC has been developed in the core team
The PoPC exemplifies the agreed overall project approach
The PoPC has been implemented and used as a blue-print for the complete project
Workshop series on DNN specific safety concerns
 • Harmonized and agreed for achieving project consensus
Series of evidence workshops
 • Specific DNN safety mechanisms and methods have been analyzed
 • Method specific Mini-GSNs developed together with “test and safety buddies”
The PoPC will be extended to cover a multi-dimensional ODD definition and include multiple DNN safety mechanisms, providing a safety-argumentation that takes the inherent multi factorial nature of DNN failures into account.
KI Absicherung ist ein Projekt der KI Familie und wurde aus der VDA Leitinitiative autonomes und vernetztes Fahren heraus entwickelt.

www.ki-absicherung.vdali.de @KI_Familie KI Familie